

Exploring an evolution-centric statistical forecast technique for Western U.S. precipitation

Agniv Sengupta JPL Postdoctoral Scholar Advisor: Duane Waliser

Winter Outlook Workshop November 17, 2021

Jet Propulsion Laboratory California Institute of Technology

Part I: Motivation and hypothesis

Part II: Evolution-centric statistical forecast technique

Part III: Hindcast skill of winter precipitation over the western U.S.

Part IV: Experimental seasonal forecast for winter 2021-22

Part I: Motivation and hypothesis

Part II: Evolution-centric statistical forecast technique

Part III: Hindcast skill of winter precipitation over the western U.S.

Part IV: Experimental seasonal forecast for winter 2021-22

Hypothesis: Low-frequency variability in the forcing?

reveals prominent role of *slowly changing* recurrences.

<u>Reference</u>: Meko, D.M., C.A. Woodhouse, and, E.R. Bigio. 2018. "Southern California Tree Ring Study." Final Report to California DWR.

Sea surface temperature evolution: A key consideration in seasonal prediction

Part I: Motivation and hypothesis

Part II: Evolution-centric statistical forecast technique

Part III: Hindcast skill of winter precipitation over the western U.S.

Part IV: Experimental seasonal forecast for winter 2021-22

Predictors: Multi-season sea surface temperatures

- □ SSTs influence both regional and remote hydroclimate:
 - Interannual variation: ENSO impacts the North American hydroclimate, Indian summer monsoon
 - Decadal variations: Multi-year droughts, e.g., the 1930s 'Dust Bowl' over the Great Plains
- □ We analyze of *118 years* of observed, seasonal SST anomalies
- □ Technique: Extended-Empirical Orthogonal Function (extended-EOF) analysis
- □ Eleven modes of global SST variability (natural variability and secular trend) extracted
- Each comprises of a sequence of maps (or, the extended-EOF pattern), and its related time series (principal component). For example,

Canonical ENSO Growth extended-EOF mode

References:

- Nigam, S., A. Sengupta, and A. Ruiz-Barradas, 2020, J. Climate, 33(13), 5479-5505.
- Nigam, S. and A. Sengupta, 2021, Geophysical Research Letters, 48(3), https://doi.org/10.1029/2020GL091447.

C.I. for SST anomalies = 0.1 K

This analysis leverages observational variables with large thermal inertia (e.g., SSTs) for skillful seasonal prediction.

Unique characteristics of our approach:

- use of multi-season, antecedent predictor information instead of utilizing just the preceding one season
- improved characterization of the evolution of the recurrent variations, i.e., both the spatial and temporal recurrence
- additional consideration of *lower-frequency* sources of natural variability in addition to interannual variability

Figure (left) Leading modes of global SST variability – ENSO (top row), Pacific Decadal Variability and Secular Trend (middle row), Atlantic modes (bottom row) informing seasonal prediction of precipitation. (right) Idealized representation of the frequency of SST modes

Part I: Motivation and hypothesis

Part II: Evolution-centric statistical forecast technique

Part III: Hindcast skill of winter precipitation over the western U.S.

Part IV: Experimental seasonal forecast for winter 2021-22

Precipitation hindcast skill

- Hindcast skill is assessed via *n-fold cross-validation* for a combination of predictor patterns.
- The model is fit iteratively n times, each time training the data on *n-1* folds and evaluating on the the validation set.

Test #1	1949-58	1959-68	1969-78	1979-88	1989-98	1999-08	2009-18
Test #2	1949-58	1959-68	1969-78	1979-88	1989-98	1999-08	2009-18
Test #3	1949-58	1959-68	1969-78	1979-88	1989-98	1999-08	2009-18

 Correlation coefficients between the hindcast and observed precipitation anomalies are displayed over individual test sets.

Skill score with change in length of predictor window

Precipitation hindcast skill

 Hindcast skill is assessed as a function of the length of temporal sampling window employed in an extended-EOF analysis.

		Spring (t-6)	Summer (t-5)	Fall (t-4)	Winter (t-3)	Spring (t-2)	Summer (t-1)	Fall (t)	Winter (t+1)
--	--	-----------------	-----------------	---------------	-----------------	-----------------	-----------------	-------------	-----------------

- Skill assessment based on correlation coefficients values vis-à-vis observations
- □ Training period: 1948-2008 winters
- □ Validation period: 2009-2018 winters
- Using a longer temporal sampling window of predictors leads to better forecast skill

Past winter precipitation forecasts and verification

□ Forecasts are generated from the modal contributions of Pacific SST PCs using a 5-season predictor window

Part I: Motivation and hypothesis

Part II: Evolution-centric statistical forecast technique

Part III: Hindcast skill of winter precipitation over the western U.S.

Part IV: Experimental seasonal forecast for winter 2021-22

Sea surface temperatures during the prior seasons

Experimental seasonal winter precipitation forecast (Dec-Feb)

2021-22 **Dec-Feb Forecast** (issued 7 Nov '21): **Seasonal Precipitation Anomalies** From 7 Pacific SST Modes From 11 Global SST Modes mm/day 50N 3 2.5 Wetter 2 45N than 1.5 normal 0.5 40N 0.25 -0.25 -0.5 35N Drier .5 than 30N normal -2.5 -3 NOAA NCEI Climate Divisions outlined in 12⁰W 11⁵W 11⁰W 10⁵W 12⁰W 125W 125W 115W 110W 105W grey, major western rivers in blue; Base period for precipitation anomalies: 1981-2010

- Our experimental forecast favors *drier-than-normal* conditions in northern and southern California.
- □ *Near-normal* rainfall forecasted in the Upper Colorado river basin.

Modal attribution to the seasonal forecast

Part I: Motivation and hypothesis

Part II: Evolution-centric statistical forecast technique

Part III: Hindcast skill of winter precipitation over the western U.S.

Part IV: Experimental seasonal forecast for winter 2021-22

Future Work

Proposed application #1: Expansion of current analysis to incorporate other sources of predictability, followed by exploration of their order of importance [submitted to NASA ROSES A.34 Earth Science Applications: Water Resources in Sep 2021]

□ Advantages:

- Ability to accommodate *multiple sources of predictability* in a unified framework
- Extracts clearly delineated predictors which are mutually orthogonal by construction
- Obtains combination of *independent* predictors that maximizes the variance explained in a *dependent* predictand
- Proposed application #2: Identification of predictors (features) from observational analysis, then, training Machine Learning algorithms on the extracted patterns [project currently underway with JPL ML group]

□ Advantages:

- Training on actual observed patterns eliminates non-physicality
- Can accommodate *non-linearity* in process interactions
- Able to handle very large datasets and multiple variables

Gradient-boosted decision trees

Data

- □ The observational record (including paleoclimate proxies) over the Western U.S. is characterized by prominent *low-frequency variability*.
- We demonstrate the need to accommodate the sources of predictability ranging from interannual to decadal-multidecadal timescales in context of longer lead seasonal forecasting.
- Regional hydroclimate predictions at longer lead times benefit from characterization of the evolution of the nascent and mature phases of variability.
- □ Based on the retrospective forecasts, thus far, global and basin-scale modes of SST variability are shown to be viable predictors of wintertime precipitation over the Western U.S.
- Our experimental forecast for winter (Dec-Feb) 2021-22 precipitation favors drier-thannormal conditions in northern and southern California, and near-normal conditions in the Upper Colorado river basin.

Thank you for listening!

Contact: agniv.sengupta@jpl.nasa.gov